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Anorexia: the toll for lipopolysaccharide recognition
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THE REVIEWS OF Hart (13) and Kent et al. (20) have drawn
attention to the so-called sickness syndrome, a suite of auto-
nomic and behavioral manifestations (sickness symptoms or
responses) of systemic inflammation. The syndrome unites
sickness responses (e.g., fever, hypothermia, hyperalgesia
and/or allodynia, hypoalgesia, sleep, and anorexia) that have
different latencies and durations and follow one another as the
disease progresses (32, 33). Although sickness responses,
when unchecked, can have pathological consequences, they are
generally believed to be adaptive (13, 20, 33). The sickness
syndrome is often induced in the laboratory by injecting
animals with bacterial LPS. Recent articles published by the
American Journal of Physiology-Regulatory, Integrative and
Comparative Physiology are dedicated to mechanisms of sev-
eral sickness symptoms occurring in response to LPS: fever (3,
8, 9, 12, 16–19, 23, 26, 35), activation of the hypothalamo-
pituitary-adrenal axis (10, 19), and anorexia (24, 39). The
article by von Meyenburg et al. (39) in the current issue
examines whether two proteins involved in LPS signaling, the
glycoprotein CD14 and Toll-like receptor 4 (TLR4), are re-
quired for LPS-induced anorexia. These two proteins—along
with myeloid differentiation protein-2 and LPS-binding pro-
tein—are considered the key molecules for LPS recognition.
Cellular TLR4 recognizes LPS and responds to it only after
LPS interacts with CD14 (1, 27, 31; for additional references,
see Ref. 39). By studying food consumption in genetically
modified mice, von Meyenburg et al. (39) showed that the
anorectic response to LPS is reduced in both CD14 knockouts
and TLR4-deficient mutants, thus indicating that CD14 and
TLR4 are required for the development of LPS-induced an-
orexia.

This observation is important because anorexia was viewed
for many years as the “black sheep” among the responses to
LPS. Early findings by J. H. Brobeck and others showing that
body temperature affects food consumption (e.g., Ref. 2) led to
the belief that infection-associated or LPS-induced anorexia is
not an independent response but that it occurs secondarily to
fever, simply reflecting the dependence of food intake on body
temperature. This belief was later disproved by showing that
LPS-induced anorexia is unrelated to body temperature (22,
25). There was also reason to suspect that LPS causes anorexia
via an atypical signaling pathway specific for this response.
Administration of LPS results in tolerance, a state in which
responses to subsequently administered LPS are decreased (for
review, see Refs. 4, 5). This is true in regards to the febrile,
hypotensive, antidiuretic, hyperglycemic, leukopenic, and
many other responses. As an exception to this rule, the an-
orexic response was found to occur in tolerant rats in a study
by O’Reilly et al. (28), although the same animals developed
no febrile response. However, this unusual result was not

confirmed by subsequent studies (7, 21) and was thought to
reflect a methodological peculiarity (21).

The article of von Meyenburg et al. (39) also reports an
interesting observation that the absence of another Toll-like
receptor, TLR2, does not affect LPS anorexia. This observation
is important, because, until recently, TLR2 was thought by
some to recognize LPS (37) and mediate LPS-induced sickness
symptoms such as fever (6). However, Hirschfeld et al. (14)
demonstrated that it is not LPS per se but rather a highly
bioactive lipopeptide contaminant of LPS preparations (“endo-
toxin protein”) that signals through TLR2. The same receptor,
TLR2, plays a major role in recognition of cell wall constitu-
ents of gram-positive bacteria, e.g., muramyl dipeptide (36,
38). In agreement with such a role, von Meyenburg et al. (39)
showed that muramyl dipeptide-induced anorexia is attenuated
in TLR2-knockout mice.

In addition to the molecules mentioned above, LPS recog-
nition may involve other receptors, most notably CD11/CD18
�2-integrin (30) and cell-surface proteins known as scavenger
receptors (29). Gioannini et al. (11) list several more examples
of proteins that may participate in cellular activation by LPS
depending on specific structural features of particular LPS
species, the host cell types examined, and the response studied.
It is possible, therefore, that some of these molecules can also
contribute to triggering the sickness syndrome, and von Mey-
enburg et al. (39) acknowledge such a possibility. This possi-
bility seems likely because the same dose of LPS can cause
different responses in the same species depending on the
experimental conditions, e.g., rats respond to LPS with fever at
a neutral ambient temperature but develop hypothermia (at
least transient) at a subneutral temperature (17, 34). Such
duality of LPS action has been speculated (15) to reflect
different distribution of the blood in the body at different
ambient temperatures and, consequently, different distribution
of LPS and its recognition by different cells possibly via
different receptors. A better understanding of the recognition
systems and mechanisms of their coupling with different sick-
ness responses may pave the road for development of new
therapeutic approaches. The article by von Meyenburg et al.
(39) is an important pavestone on this road, or should I say toll
road?
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